768 research outputs found

    Food Ingredients Recognition through Multi-label Learning

    Full text link
    Automatically constructing a food diary that tracks the ingredients consumed can help people follow a healthy diet. We tackle the problem of food ingredients recognition as a multi-label learning problem. We propose a method for adapting a highly performing state of the art CNN in order to act as a multi-label predictor for learning recipes in terms of their list of ingredients. We prove that our model is able to, given a picture, predict its list of ingredients, even if the recipe corresponding to the picture has never been seen by the model. We make public two new datasets suitable for this purpose. Furthermore, we prove that a model trained with a high variability of recipes and ingredients is able to generalize better on new data, and visualize how it specializes each of its neurons to different ingredients.Comment: 8 page

    Superconformal invariance from N=2 supersymmetry Ward identities

    Get PDF
    We algebraically prove the cancellation of the β function at all order of perturbation theory of Script N = 2 supersymmetric gauge theories with a vanishing one-loop β function. The proof generalises that recently given for the Script N = 4 case. It uses the consistent Slavnov-Taylor identities of the shadow dependent formulation. We also demonstrate the cancellation at all orders of the anomalous dimensions of vector and hypermultiplet ½BPS operators

    Reconstruction of N=1 supersymmetry from topological symmetry

    Full text link
    The scalar and vector topological Yang-Mills symmetries on Calabi-Yau manifolds geometrically define consistent sectors of Yang-Mills D=4,6 N=1 supersymmetry, which fully determine the supersymmetric actions up to twist. For a CY_2 manifold, both N=1,D=4 Wess and Zumino and superYang-Mills theory can be reconstructed in this way. A superpotential can be introduced for the matter sector, as well as the Fayet-Iliopoulos mechanism. For a CY_3 manifold, the N=1, D=6 Yang-Mills theory is also obtained, in a twisted form. Putting these results together with those already known for the D=4,8 N=2 cases, we conclude that all Yang--Mills supersymmetries with 4, 8 and 16 generators are determined from topological symmetry on special manifolds.Comment: 13 page

    An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies.

    No full text
    Relative survival provides a measure of the proportion of patients dying from the disease under study without requiring the knowledge of the cause of death. We propose an overall strategy based on regression models to estimate the relative survival and model the effects of potential prognostic factors. The baseline hazard was modelled until 10 years follow-up using parametric continuous functions. Six models including cubic regression splines were considered and the Akaike Information Criterion was used to select the final model. This approach yielded smooth and reliable estimates of mortality hazard and allowed us to deal with sparse data taking into account all the available information. Splines were also used to model simultaneously non-linear effects of continuous covariates and time-dependent hazard ratios. This led to a graphical representation of the hazard ratio that can be useful for clinical interpretation. Estimates of these models were obtained by likelihood maximization. We showed that these estimates could be also obtained using standard algorithms for Poisson regression

    Ten-dimensional super-Yang-Mills with nine off-shell supersymmetries

    Get PDF
    After adding 7 auxiliary scalars to the d=10 super-Yang-Mills action, 9 of the 16 supersymmetries close off-shell. In this paper, these 9 supersymmetry generators are related by dimensional reduction to scalar and vector topological symmetry in N\N=2 d=8 twisted super-Yang-Mills. Furthermore, a gauge-invariant superspace action is constructed for d=10 super-Yang-Mills where the superfields depend on 9 anticommuting theta variables.Comment: 15 page

    Counterterms vs. Dualities

    Get PDF
    We investigate and clarify the mutual compatibility of the higher order corrections arising in supergravity and string theory effective actions and the non-linear duality symmetries of these theories. Starting from a conventional tree level action leading to duality invariant equations of motion, we show how to accommodate duality invariant counterterms given as functionals of both electric and magnetic fields in a perturbative expansion, and to deduce from them a non-polynomial bona fide action satisfying the Gaillard-Zumino constraint. There exists a corresponding consistency constraint in the non-covariant Henneaux-Teitelboim formalism which ensures that one can always restore diffeomorphism invariance by perturbatively solving this functional identity. We illustrate how this procedure works for the R^2 \nabla F \nabla F and F^4 counterterms in Maxwell theory.Comment: 15 page

    Finiteness Properties of the N=4 Super-Yang--Mills Theory in Supersymmetric Gauge

    Get PDF
    With the introduction of shadow fields, we demonstrate the renormalizability of the N=4 super-Yang--Mills theory in component formalism, independently of the choice of UV regularization. Remarkably, by using twisted representations, one finds that the structure of the theory and its renormalization is determined by a subalgebra of supersymmetry that closes off-shell. Starting from this subalgebra of symmetry, we prove some features of the superconformal invariance of the theory. We give a new algebraic proof of the cancellation of the β\beta function and we show the ultraviolet finiteness of the 1/2 BPS operators at all orders in perturbation theory. In fact, using the shadow field as a Maurer--Cartan form, the invariant polynomials in the scalar fields in traceless symmetric representations of the internal R-symmetry group are simply related to characteristic classes. Their UV finiteness is a consequence of the Chern--Simons formula

    New Results on N=4 SuperYang-Mills Theory

    Get PDF
    The N=4 SuperYang--Mills theory is covariantly determined by a U(1) \times SU(2) \subset SL(2,R) \times SU(2) internal symmetry and two scalar and one vector BRST topological symmetry operators. This determines an off-shell closed sector of N=4 SuperYang-Mills, with 6 generators, which is big enough to fully determine the theory, in a Lorentz covariant way. This reduced algebra derives from horizontality conditions in four dimensions. The horizontality conditions only depend on the geometry of the Yang-Mills fields. They also descend from a genuine horizontality condition in eight dimensions. In fact, the SL(2,R) symmetry is induced by a dimensional reduction from eight to seven dimensions, which establishes a ghost-antighost symmetry, while the SU(2) symmetry occurs by dimensional reduction from seven to four dimensions. When the four dimensional manifold is hyperKahler, one can perform a twist operation that defines the N=4 supersymmetry and its SL(2,H)\sim SU(4) R-symmetry in flat space. (For defining a TQFT on a more general four manifold, one can use the internal SU(2)-symmetry and redefine a Lorentz SO(4) invariance). These results extend in a covariant way the light cone property that the N=4 SuperYang-Mills theory is actually determined by only 8 independent generators, instead of the 16 generators that occur in the physical representation of the superPoincare algebra. The topological construction disentangles the off-shell closed sector of the (twisted) maximally supersymmetric theory from the (irrelevant) sector that closes only modulo equations of motion. It allows one to escape the question of auxiliary fields in N=4 SuperYang-Mills theory.Comment: 14 page

    Maximally Supersymmetric Yang-Mills in five dimensions in light-cone superspace

    Full text link
    We formulate maximally supersymmetric Yang-Mills theory in five dimensions in light-cone superspace. The light-cone Hamiltonian is of the quadratic form and the theory can be understood as an oxidation of the N=4 Super Yang-Mills Theory in four dimensions. We specifically study three-point counterterms and show how these counterterms vanish on-shell. This study is a preliminary to set up the technique in order to study possible four-point counterterms.Comment: 25 pages, typos corrected, references adde

    Multi-Centered Black Hole Flows

    Full text link
    We describe the systematical construction of the first order formalism for multi-centered black holes with flat three dimensional base-space, within the so-called T3T^{3} model of N=2, D=4 ungauged Maxwell-Einstein supergravity. The three possible flow classes (BPS, composite non-BPS and almost-BPS) are analyzed in detail, and various solutions, such as single-centered (static or under-rotating) and all known multi-centered black holes, are recovered in this unified framework. We also consider the possibility of obtaining new solutions. The almost-BPS class is proved to split into two general sub-classes, corresponding to a positive or negative value of the duality-invariant polynomial for the total charge; the well known almost BPS system is shown to be a particular solution of the second sub-class.Comment: 17 pages,no figure
    corecore